Anisotropic Model Training
Functions
Trains an anisotropic PIP model using the Adam optimizer. |
- molpipx.trainig_anisotropic_model._train_aniso_adam(data: Tuple, atoms: List, f_mono: Callable, f_poly: Callable, optimizer_info: jaxtyping.PyTree) Tuple[jaxtyping.Float, jaxtyping.PyTree][source]
Trains an anisotropic PIP model using the Adam optimizer.
- Parameters:
data (Tuple) – A tuple containing training and validation data:
((X_tr, y_tr), (X_val, y_val)).atoms (List) – A list of atom types (e.g.,
['H', 'C', 'H']) used to generate the mask.f_mono (Callable) – Function that returns the monomials.
f_poly (Callable) – Function that returns the polynomials.
optimizer_info (PyTree) – A dictionary or PyTree containing optimizer settings: *
'tol': Convergence tolerance. *'Maxiters': Maximum number of epochs. *'learning_rate': Learning rate for Adam.
- Returns:
- A tuple containing:
The final optimized parameters (
l_opt[-1]).The history of parameters over all epochs (
l_opt).
- Return type:
Tuple[Float, PyTree]